æ¡ä»¶ g (x, y) = 0 ã®ãã¨ã§ï¼ f (x, y) ãç¹ (a, b) ã§æ¥µå¤ãã¨ãã¨ããï¼ãã®ã¨ã g x (x, y) â 0 ã¾ã㯠g y (x, y) â 0 ãªãã°ï¼æ¬¡å¼ãæºãã宿° λ ãåå¨ããï¼ f x (a, b) + λ g x (a, b) = 0. f y (a, b) + λ g y (a, b) = 0 . äºå¤æ°ã®äºæ¬¡é¢æ°ã®æå¤§å¤ï¼æå°å¤ãæ±ããåé¡ã解説ãã¾ããå¹³æ¹å®æã«ããè§£æ³ï¼åå¾®åãç¨ããè§£æ³ï¼å¤å¥å¼ãç¨ããè§£æ³ã ï½å®æè©¦é¨ããæ°å¦ãªãªã³ããã¯ã¾ã§800 å®çï¼2夿°é¢æ°ã®æ¥µå¤§ã»æ¥µå°ã»éç¹ã®å¤å®; è¨å®: Dï¼å¹³é¢R 2 ä¸ ã®ä»»æã® ç¹éå (x 0,y 0)ï¼Dã« å±ãç¹ f(x,y)ï¼Dã§å®ç¾©ããã2夿°é¢æ°ã ç¹(x 0,y 0)ã®è¿ãã§C 2 ç´ã¨ããã å®çããããã®è¨å®ã®ãã¨ã§ãf xy (x 0,y 0)ï¼f yx (x 0,y 0) 次: 2.47 é°é¢æ°ã®æ¥µå¤åé¡ ä¸: 2 åå¾®å å: 2.45 2 夿°é¢æ°ã®æ¥µå¤ 2 . é°é¢æ°æ¥µå¤åé¡ã®ã¾ã¨ã æ¡ä»¶f(x,y)=0ï¼f y(x,y) =0ãæºããç¹(a,b) ã®ä»è¿ã§ã¯yã¯xã®é¢æ°y = Ï(x)ã¨èãããã(é° é¢æ°å®ç)ï¼ãã®é¢æ°y = Ï(x) ãæ¡ä»¶f(x,y)=0 ããå®ã¾ãé°é¢æ°ã¨è¨ãï¼ å®ç. ï¼2ï¼æ¡ä»¶å¼ãäºã¤ã®å ´åã®ã©ã°ã©ã³ã¸ã¥æªå®ä¹æ°æ³ 1ï¼ç髿²é¢ã¨å¾é
ãã¯ãã« å¤æ°xï¼yï¼zã ãªãäºã¤ã®é¢ä¿å¼[äºæ¡ä»¶å¼]ã§å¶ç´ããã¦ããã¨ãã«ã颿°fï¼xï¼yï¼zï¼ã®æ¥µå¤ãæ±ããåé¡ãèããã 颿°fï¼xï¼yï¼zï¼ã«æ¼ãã¦å¤æ°ï¼xï¼yï¼zï¼ãå®ããã¨fï¼xï¼yï¼zï¼ã¯ããå¤ãã¨ãã ç¨)2夿°é¢æ°ã®æ¥µé : åå°é¢æ°: å微忳: å微忳 å¾®ç©åI 2014 32 11 1 夿°é¢æ°ã®æ¥µå¤åé¡ã¨1 éã®æ¡ä»¶ 1 夿°é¢æ°y = f(x) ãx = a ã«ããã¦æå¤§ã§ããã¨ã¯ï¼ ãã¹ã¦ã®x ã«å¯¾ãã¦ï¼f(a) f(x) ãæç«ãã¦ãã ãã¨ãããï¼ããã¦ï¼f(a) ã®å¤ãæå¤§å¤ã¨ããï¼åæ§ã«ï¼x = a ã«ããã¦æ å°ã§ããã¨ã¯ï¼ ãã¹ã¦ã®x ã«å¯¾ãã¦ï¼f(a) f(x) ãæç«ãã ä½çãªä¾é¡ã使ã£ã¦èª¬æãã¾ããã詳ããå
容ã¯ããã®è¨äºãèªãã§ãã ãã 2夿°é¢æ°ã®æ¥µå¤. 217 (極å¤) 颿° ã«ããã¦ç¹ ã , ãã¿ããã¨ãï¼ ãæ¥µå¤ã¨ãªãããã®å¤å®æ¡ä»¶ã¯æ¬¡ã®éã㧠⦠è¨ç®å¼ã®æ¼ç®æ¡æ°ã6æ¡ã10æ¡ãã»ã»ã»130æ¡ã¾ã§è¨å®å¤æ´ãã¦è¨ç®ã§ãã¾ããæ£ããæ¡ã¾ã§ã®æ°å¤ãèªå夿ãã¦è¨ç®çµæã精度ä¿è¨¼ãã¦ã¾ããä¸è§é¢æ°ãææ°é¢æ°ãã¬ã³ã颿°ãããã»ã«é¢æ°ãªã©ã«ãè¤ç´ æ°ã§è¨ç®ã§ãã¾ãã 2. 次ã®2夿°é¢æ°\[f(x,y) = \sin (x+y) \]ã®ãã¯ãã¼ãªã³å±éãæ±ãããã ã¤ãã«ã2夿°é¢æ°ã®å¤æ° ã1ã¤æåã«ç½®ãæããæ¹æ³ã説æãã¾ãã ãã®æã¯å ´åã«ãã£ã¦ã¯ããªãè¨ç®éãå°ãªããªãã®ã§ä½¿ãããªãç©æ¥µçã«ä½¿ã£ã¦ããã ããã°ãªã¨æãã¾ãã ä¾é¡4. 2夿°é¢æ°ã®æå°å¤ãæ±ãã ï¼ãã®è¨äºã®å
容ï¼ï¼å¤æ°ã2ã¤ãããããããã2夿°é¢æ°ãã®æå°å¤ã®åé¡ã®è§£æ³ã3種é¡ç´¹ä»ãã¾ãã ï¼2020/02/08æ´æ°ï¼æªå®ä¹æ°æ³(å¿ç¨ã¬ãã«)ã®è¨äºãæå¾ã®é
ã«è¿½å ã â¦ é¢æ°ã®æ¥µå¤ã¨ã¯ï¼ç°¡åã«è¨ãã°ãã¾ããã®ã©ã®ç¹ã§ã®å¤ããã大ããï¼å°ããï¼å¤ãã¨ãç¹ã§ã®å¤ãã§ãï¼1夿°é¢æ°ã®å ´åã¯ãå¾®åã0ãã®ç¹ï¼ç義ã«ã¯ããã«2åå¾®åã0ã§ãªãç¹ï¼ã極å¤ãã¨ãç¹ã§ããï¼2夿°ã®å ´åã¯ãããããè¤éã§ãï¼ 2ã¤ã®å®æ°å¤æ°ã®é¢æ° \begin{eqnarray} f(x, y) &=& x^4 + y^4 â 2(x â y)^2 \end{eqnarray} ã®æ¥µå¤ãå
¨ã¦æ±ããã f(x,y)=2x^3-2xy-y^2-3x+yã®åçç¹ã¨æ¥µå¤ãæ±ããåé¡ãè§£ãã¾ãããããã¨(x,y) = (-1,3/2), (-2/3, -5/6)ãå°ããæ¥µå¤ã¯ã©ã¡ããæ¥µå¤§ã¨ãªãã¾ããããããçãã¨ãã¦ãã£ã¦ãããã確ããããã®ã§ããããã£ã¦ããã§ããããï¼ã¾ããã© å®ç¾©7.2 2夿°é¢æ°f(x;y) ã« ... åé¡7.2 次ã®é¢æ°ã®æ¥µå¤ãæ±ãã¦ä¸ããã ï¼1ï¼f(x;y) = x3 5x2 +8x+y2 +2y ï¼2ï¼g(x;y) = x3 +3xy2 3x åé¡7.3 æ¡ä»¶x2 + y2 1 = 0 ã®ä¸ã§ã®é¢æ°h(x;y) = x3 y2 ã®æ¥µå¤ã«ã¤ãã¦ä»¥ä¸ã® åãã«çãã¦ä¸ããã ï¼1ï¼Lagrange ã®ä¹æ°æ³ã«ãã£ã¦åé¡ã®æ¡ä»¶ã®ä¸ã§ã®h(x;y) ã®æå¤§å¤ã¨æå°å¤ã ⦠ããä¸å®å¤2sã§ããä¸è§å½¢ã®ãã¡ã§ãä¸è¾ºã軸ã¨ãã¦å転ããã¨ãã§ããç«ä½ã®ä½ç©ãæå¤§ã®ãã®ãæ±ããã ãããäºå¤æ°é¢æ°ã®æ¥µå¤ã使ã£ã¦è§£ãã¦ãã ããã ã©ã°ã©ã³ã¸ã¥ã¯ç¿ã£ã¦ãªãã®ã§ä½¿ããªãã§è§£ãæ¹æ³ãæãã¦ãã ãã 45 2 夿°é¢æ°ã®æ¥µå¤ å®ç¾© 2 . 46 2 夿°é¢æ°ã®æ¥µå¤§å¤ã¨æ¥µå°å¤ã®å¤å® å®ç 2 . 2夿°é¢æ°fï¼xãyï¼=x^3-3xï¼1+y^2ï¼ã«ã¤ãã¦ã極å¤ããããªããã¨ã示ããã¨ããåé¡ã§ãéä¸è¨ç®ãªã©çç¥ãã¾ãããåçç¹ã¯ï¼1,0ï¼,ï¼-1,0ï¼,ï¼0,iï¼ãåºã¾ãããï¼ï¼0,iï¼ãåçç¹ã¨å¼ãã§ããã®ããããã¾ãããï¼ããã§ãï¼1,0ï¼, ä½ä¾; ã®é ã«è§£èª¬ãã¾ãã æºå1ï¼ããã»è¡åã¨ã¯ å½ãµã¤ã ã®ã¬ãã«ã¯ã ... åæ³ï¼ï¼9ï¼ ä¸è§é¢æ°ï¼41ï¼ ææ°é¢æ°ã¨å¯¾æ°é¢æ°ï¼23ï¼ æ´å¼ã®å¾®åï¼43ï¼ æ´å¼ã®ç©åï¼30ï¼ å¤å¤æ°é¢æ°ã®æå¤§ã»æå°ãã¿ã¼ã³ã¨çºæ³ï¼13 ï¼ æ°å¦b. ¥ã§æ´»ç¨ãããæè¾ºãé¢ç©ã®è¨ç®ãé«åº¦ãªå®åãç ç©¶ã§æ´»ããé«ç²¾åº¦ãªç¹æ®é¢æ°ãçµ±è¨é¢æ°ãªã©å¤å½©ãªã³ã³ãã³ããããã¾ãã 颿°ã°ã©ã Yokatoki : Copyright(C) 2006-,YokahiYokatoki 極大å¤ã極å°å¤ãªã©ã®æ¥µå¤ã¯é¢æ°ã«ãã£ã¦ã¯å¿
ãåå¨ããããã§ã¯ããã¾ããã æ¥µå¤ãæã¤æ¡ä»¶ã¨æ¥µå¤ãæããªãæ¡ä»¶ãè¯ãèãããã®ã§èª¬æãã¦ããã¾ãã æ¥µå¤ã¨ã¯ã©ããããã®ããããããç°¡åãªè¨èã§èª¬æãã¾ãã æ°å¦ãããé£ãã ⦠206 (極å¤) 颿° ãï¼ ç¹ ã¨ãã®ä»»æã®è¿åã®ç¹ ã«å¯¾ã㦠ãã¿ããã¨ãï¼ ã¯ç¹ ã§ æ¥µå¤§å¤ ãã¨ãã¨ããï¼ ¦è¾ºã¯xâ aã®æ¥µéã«ãã㦠ã©ã¡ããfâ²(a) ã«åæãã¾ããã¤ã¾ãã fâ²(a) = lim xâaâ0 f(x)âf(a) xâa ⥠0 lim xâa+0 f(x)âf(a) xâa ⤠0 ã¨ãªãã¾ãã 2夿°é¢æ°ã®æ¥µå¤ã®åé¡ãåãããªãã¦å°ã£ã¦ãã¾ãããã f(x,y)=x^3+y^2ã®æ¥µå¤ãæ±ãã ã¨ããåé¡ã®è§£ãæ¹ã¨çããåããã¾ããã 詳ããæãã¦ãã ããï¼ æ°å¦.